ADVANCED VITICULTURE

Coordinator: Carlos M. A. Lopes (Associate Prof., DCEB, Viticulture)

Office: main building, 1st floor, "Secção de Horticultura"

Contacts: Tel. 21 3653450

Email: carlosmlopes@isa.ulisboa.pt

Timetable:

Monday: 14:30-17:30, classroom 27 (main building)

Thursday: 14:00-18:00 (mainly by ZOOM)

Program and calendar 2020/21 (12/10/2020 to 18/12/2020)

Week	Date/	Module (Lecturer)
	classroom	
1.1	October	Introduction to Advanced Viticulture
	12	Program and Calendar
	(Room 27)	Bibliography
		Assessment
1.2	<u>October</u>	I. Vineyard mechanization
	15	1.1. Introduction
	(ZOOM)	1.2. Mechanization of plantation
		1.3. Mechanization of fertilization and soil management
		1.4. Mechanization of canopy management
		1.5. Vineyard spraying equipment.
2.1	<u>October</u>	1.6. Mechanical harvest
	19	1.7. Mechanical pruning
	(Room 27)	
2.2	<u>October</u>	Vineyard spraying equipment - field demonstration of the calibration of a sprayer
	22	at the ISA vineyards
	(vineyard)	
3.1	<u>October</u>	VI- Sustainable Viticulture
	26	- Introduction to Sustainable Viticulture
	Room 27	- Types of Sustainable Viticulture – an overview
		- Low Carbon wine – a case study in Alentejo
		Practical reports: list of topics
3.2	<u>October</u>	II. Yield Estimation and control
	29	2.1. Introduction
		2.2. Yield components and the period in which they are determined. Factors
	ZOOM	affecting yield components
		2.3. Yield variability and it's causes
		2.4. Yield forecast
		2.4.1. Advantages of Yield forecast
		2.4.2. Main techniques for Yield forecasting

		2.4.2.1. Aeropalynological forecast models;
		2.4.2.2. Estimation of yield components;
		2.4.2.3. Agrometeorological models;
		2.4.2.4. Remote sensing;
		2.4.2.5. Measuring trellis tension;
		2.4.2.6. Image Analysis
4.1	<u>November</u>	II. Yield Estimation and control (conc)
	2	2.5. Yield control by viticultural practices.
	Room 27	2.5.1. pruning level;
		2.5.2. shoot thinning;
		2.5.3. shoot tipping or hedging during flowering;
		2.5.4. early leaf removal;
		2.5.5. spraying growth regulators;
		2.5.6. inflorescence thinning;
		2.5.7. berry thinning;
		2.5.8. cluster thinning.
4.2	November	III. <i>Workshop</i> on Implications of climate change for viticulture and wine
	5	production – part 1
		3.1 Introduction
	(ZOOM)	3.2 Climate Change & Viticulture – observed and estimated impacts
		3.3 Climate changes and risk of berry sunburn
		3.4 Thermal imaging as a tool to monitor the impact of climate change on modern
		3.5 Effects of heat stress on berry color - Impact of irrigation
5 1	NT 1	3.6 Evaluation of climate change impacts on viticulture using simulation models
5.1	November	VI- Sustainable viticulture
5.2	9 November	Werkshop on Implications of alimate shange for viticulture and wine
5.2	<u>12</u>	nreduction (next 2)
	(700M)	3.5 Effects of heat stress on herry color - Impact of irrigation
		3.6 Evaluation of climate change impacts on viticulture using simulation models
		3.7 Adaptation measures
6.1	November	IV. Precision Viticulture
0.1	16	4.1. Introduction. The concept of precision agriculture/viticulture
	(Room 27)	4.2 Technologies in Precision Viticulture
		4.2.1 Geologies in Treeston Vineditate
		4.2.2. Cooperation Systems
		4.2.2. Geographical information Systems;
		4.2.3. Variable Rate Technology;
		4.2.4. Remote Sensing
		4.2.5 Proximal Sensing
		4.2.5.1. Soil monitoring
		4.2.5.2 Yield monitoring
		4.2.5.3 Berry composition monitoring
		4.2.5.4. Wireless sensor network
		4.2.5 Robotics
62	November	IV Provision Viticulture (conc)
0.2	10	4.3 Main Applications of PV - Case-studies (invited speakers)
	(700M)	4.3.1 Vield estimation using image analysis
		4.3.2 Precision Irrigation
		4.3.3. Remote Sensing in Vinevards

		4.3.4. VRT applied to mechanical pruning
		4.3.5. Robotic Applications in Precision Viticulture
7.1	<u>November</u>	VI- Sustainable Viticulture
	<u>23</u>	Free day for PR preparation
7.2	<u>November</u>	VI- Workshop on Sustainable Viticulture
	<u>26</u>	- Metrics to calculate carbon footprint in wine.
	(Zoom)	- Sustainable Use of Pesticides - Challenges for Water Protection
		- Sustainable water use in viticulture
		- What can arbuscular mycorrhiza do for us in sustainable viticulture?
		- Reducing pesticides in the vineyards by using resistant varieties
		- Wines of Alentejo Sustainability Plan (WASP)
		- Organic Viticulture: A case study at Quinta do Monte d'Oiro;
		General Discussion: Round Table on Organic Viticulture with several experts
8.1	Nov	VI- Sustainable Viticulture (cont.)
	30	Practical Report – Students Presentations – part I
8.2	Dec 3	VI- Sustainable Viticulture (cont.)
		Practical Report – Students Presentations – part II
9	Dec	V. Workshop on Grapevine Biotechnology: main applications in viticulture.
	7 & 10	-Applications of biotechnology: what is currently being done.
		- Non-conventional approaches to solve recalcitrant grapevine and wine problems.
	(Room 27	- Grapevine genome organization: the role of bioinformatics. Grapevine
	/ZOOM)	epigenetics.
		-Using Molecular Biology tools to identify grapevine varieties and study
		Phylogeny
		- Grapevine: evolution under domestication
		-Acclimation and tolerance to abiotic stress of grapevine portuguese varieties.
		- Grapevine aquaporins: understanding the water, glycerol and atypical substrates
		transport in Vitis vinifera through heterologous expression in a aqy-null
		Saccharomyces cerevisiae strain.
		– General Discussion
10	Dec	Practical Report – discussions with professor
	14 &19	
	(ROOM	
	27 or	
	ZOOM)	

Assessment

Evaluation by a final examination (60%) and a written report (40%) based on a literature review of a Sustainable Viticulture topic. The report should be formatted as a paper and presented and discussed at the end of the semester. A minimum of 75% presences in the classes is needed for being accepted to the final exam.

General Literature

Besides the slides of each lecture presentation, specific literature for each chapter will be upload to the FENIX platform. Below are some examples of general bibliography to be consulted:

- Bramley, R. G. V, & Hamilton, R. P. (2004). Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages. Australian Journal Of Grape And Wine Research, 10(1), 32–45.
- Chaves MM, Costa JM, Zarrouk O, Pinheiro C, Lopes CM and Pereira JS 2016. Controlling stomatal aperture in semiarid regions - The dilemma of saving water or being cool? Plant Science, 251, 54–64.
- Chaves MM, Santos TP, Souza CR, Ortuño MF, Rodrigues ML, Lopes CM, Maroco JP, Pereira JS, 2007. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann Appl Biol., 150: 237-252.
- Chaves, MM;. Zarrouk, O.; Francisco, R.; Costa, JM; Santos, T.P.; Regalado, AP; Rodrigues, ML; Lopes, CM 2010. Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany 105: 661–676.
- Clingeleffer, P., Dunn, G., Krstic, M., Martin, S. (2001). Crop Development, Crop Estimation and Crop Control to Secure Quality and Production of Major Wine Grape Varieties: A National Approach. Final report to Grape and Wine Research and Development Corporation, CSIRO Plant Industry, Austrália. pp. viii, 148, [17] http://hdl.handle.net/102.100.100/201731?index=1
- Costa, J.M, Vaz, M., Escalona, J., Egipto, R., Lopes, CM., Medrano, H., Chaves, M.M. 2016. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agricultural Water Management 164, (1), 5–18.
- Gerós, H. et al. 2015. Grapevine in a Changing Environment. A Molecular and Ecophysiological Perspective. Wiley & Sons Ltd.
- Gladstones, J. 2011. Wine, Terroir and Climate Change. Wakefield Press, Adelaide, South Austrália.
- Iland, P. et al. 2011. The Grapevine: from the science to the practice of growing vines for wine. Patrick Iland Wine Promotions Pty, Austrália.
- Jones, G. 2012. Climate Assessment for the Douro Wine Region: An Examination for the Past, Present and Future Conditions for Wine Production. ADVID, Régua, Portugal.
- Lopes CM, Costa J., Egipto R., Zarrouk O., and Chaves, Maria MM. 2018 Can Mediterranean terroirs withstand climate change? Case studies at the Alentejo Portuguese winegrowing region. In. *E3S Web of Conferences* 50, 01038. XII Congreso Int. Terroir. Zaragoza, 18-22 Junio, 2018. https://www.e3s-conferences.org/articles/e3sconf/ pdf/.
- Lopes CM, Egipto R. Zarrouk. and Chaves MM. 2020. Carry-over effects on bud fertility makes early defoliation a risky crop-regulating practice in Mediterranean vineyards. Australian Journal of Grape and Wine Research 26, 290–299.
- Lopes, C.M., Santos, T., Monteiro, A.; Rodrigues, M.L, Costa, J.M. & Chaves, M.M. 2011. Combining cover cropping with deficit irrigation in a Mediterranean low vigor vineyard. Scientia Horticulturae , 129:603-612.
- Meissner G, Athmann M., Fritz, J., Kauer R., Stoll M. and Schultz HR 2019. Conversion to organic and biodynamic viticultural practices: impact on soil, grapevine development and grape quality. OENO One 4, 639-659.
- Monteiro, A.; Lopes, C.M. 2007. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agri. Ecosyst. Environ., 121:336-342.
- O.I.V. 2008. Guidelines for Sustainable Vitiviniculture: Production, processing and packaging of products. International Organisation of Vine and Wine, Resolution CST 1/2008, Paris, 2008.
- Pedneault K., Provost C. 2016. Fungus resistant grape varieties as a suitable alternative for organic wine production: Benefits, limits, and challenges. Scientia Horticulturae, 208, 57-77
- Profit, T. et al. 2006. Precision Viticulture. A new era in vineyard management and wine production. Winetitles, Ashford, South Australia.
- Seng, K. P., Ang, L. M., Schmidtke, L. M., & Rogiers, S. Y. (2018). Computer vision and machine learning for viticulture technology. IEEE Access, 6, 67494–67510.
- Willer H, Lernoud J, 2019. Organic agriculture worldwide: current statistics. In: IFOAM Fa, editor editors. The World of Organic Agriculture Statistics and Emerging Trends 2014 Frick and Bonn.